

Why Are Indian Children So Short? The Role of Birth Order and Son Preference

By SEEMA JAYACHANDRAN AND ROHINI PANDE

American Economic Review 2017, 107(9): 2600–2629

Child Stunting

- \triangleright Defined as having a height-for-age (HFA) that is 2σ or more below the worldwide
- One in four children under age five, worldwide, is so short as to be classified as stunted (UNICEF 2014).
- A key marker of child malnutrition, casting a long shadow over an individual's life
- On average, people who are shorter as children are less healthy, have lower cognitive ability, and earn less as adults

About India and Africa

- > Over 30% of the world's stunted children live in India and child stunting rate is over 40%
- India outperforms Africa on maternal mortality, life expectancy, food security, poverty incidence, and educational attainment (Gwatkin et al. 2007). Yet, India has the 5th highest stunting rate among 81 low-income and low-middle-income countries with comparable child height data (UNICEF 2013), despite being in the middle of the group (rank 43) for GDP per capita.

FIGURE 1. CHILD HEIGHT VERSUS NATIONAL GDP

Notes: The light and dark circles represent sub-Saharan African countries and Indian states, respectively. The averages are calculated over all children less than 60 months old. The lines represent the best linear fit for each sample. National GDP data are based on the Penn World Table 9.0 (Feenstra, Inklaar, and Timmer 2015).

I. Background and Data Description

➤ HFA z-score: the established link between child stunting and adverse longterm outcomes, it is based on WHO universally applicable standard for 0-5 years old children

z-score = **0** represents the reference population median

z-score = **-2** (cutoff) indicates 2σ below the reference population median

I. Background and Data Description

- ➤ Data source for Indian children: 2005-2006 National Family Health Survey (NFHS-3)
- ➤ Data source for African children: Demographic and Health Surveys (DHS).
- > The sample comprises the 168,108 children with anthropometric data

TABLE 1—SUMMARY STATISTICS

	India subsample	Africa subsample		India subsample	Africa subsample
Mother's age at birth (years)	24.75 [5.23]	26.96 [6.86]	Child's age (months)	30.20 [16.90]	28.27 [17.06]
Mother's total children born	2.74 [1.82]	3.88 [2.54]	Child is a girl	0.48 [0.50]	0.50 [0.50]
Mother's desired fertility	2.47 [0.96]	4.62 [1.47]	Child's birth order	2.62 [1.80]	3.74 [2.48]
Mother wants more children	0.34 [0.47]	0.67 [0.46]	Child's HFA z-score	-1.51 [1.81]	-1.35 [1.94]
Mother completed her fertility	0.67 [0.47]	0.33 [0.47]	Child is stunted	0.40 [0.49]	0.38 [0.48]
Mother is literate	0.58 [0.49]	0.50 [0.50]	Child's WFA z-score	-1.53 [1.33]	-0.88 [1.42]
Mother's height (meters)	1.52 [0.06]	1.58 [0.07]	Child's hemoglobin level (g/dl)	10.28 [1.57]	10.15 [1.68]
Mother took iron supplements	0.69 [0.46]	0.62 [0.48]	Child is deceased	0.05 [0.22]	0.07 [0.26]
Mother's total tetanus shots	1.87 [0.94]	1.41 [1.20]	Child taking iron pills	0.06 [0.23]	0.11 [0.32]
Total prenatal visits	4.04 [3.48]	3.85 [3.07]	Child's total vaccinations	6.61 [2.80]	6.24 [3.12]
Delivery at health facility	0.45 [0.50]	0.47 [0.50]	Birth spacing (months)	36.16 [20.32]	38.69 [20.63]
Postnatal check within two months	0.09 [0.29]	0.30 [0.46]	Diarrhea in last two weeks	0.09 [0.29]	0.16 [0.36]
Average pooled inputs	0.33 [0.28]	0.38 [0.30]	Open defecation	0.46 [0.50]	0.32 [0.47]
Percent nonresident among children	0.02 [0.04]	0.10 [0.08]	Land scarcity	5.03	2.56 [1.17]
Number of adult females in household	1.85 [1.09]	1.60 [1.06]	Number of PSUs	3,822	10,366
log GDP per capita (in child's birth year)	7.78 [0.10]	7.36 [0.65]	Main sample of children	42,069	126,039

I. Background and Data Description

Within-India analysis uses two datasets

All three waves of NFHS (92-93, 98-99, 05-06), over 90,000 Indian children sample

Two waves of Indian Human Development Survey (IHDS), conducted in 2005 and 2012. Families that had no children between the two waves and therefore (almost surely) completed fertility

II. Birth Order and Child Outcomes

A. Child Height

FIGURE 2. CHILD HEIGHT IN INDIA AND AFRICA, BY CHILD'S BIRTH ORDER

Notes: The figure depicts the mean child height-for-age z-scores for sub-Saharan Africa and India, by the birth order of the child. The mean is calculated over all children less than 60 months old.

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

The average India-Africa height gap, pooling all children	(1)	(2)	HFA z-score (3)	(4)	(5)	Stunted (6)	WFA z-score (7)	Hb level (8)	Deceased (9)
	-0.082 [0.011								
India × 2nd child		-0.144 [0.025]	-0.161 [0.027]	-0.110 [0.063]		0.051 [0.007]	-0.146 [0.020]	-0.094 [0.030]	0.003 [0.004]
India \times 3rd+child		-0.377 [0.024]	-0.227 [0.032]	-0.193 [0.092]	-0.436 [0.085]	0.064 [0.009]	-0.198 [0.024]	-0.159 [0.036]	0.002 [0.004]
2nd child		0.023 [0.015]	-0.011 [0.017]	-0.097 [0.053]		0.009 [0.004]	0.009 [0.012]	-0.011 [0.022]	-0.014 [0.002]
3rd+ child		-0.066 [0.013]	-0.118 [0.019]			0.036 [0.005]	-0.063 [0.014]	-0.037 [0.025]	-0.011 [0.003]
Africa mean of outcome	-1.351	-1.351	-1.351	-1.351	-1.351	0.375	-0.877	10.150	0.071
Child's age dummies × India	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mother's literacy × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother's age at birth × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample	No	No	No	Yes	No	No	No	No	No
Observations	168,108	168,108	167,737	66,566	83,228	167,737	167,737	88,838	199,514

II. Birth Order and Child Outcomes

A. Child Height

Next, disaggregate the height disadvantage by birth order. The outcome variable remains HFA for child i born to mother m in country c.

$$\begin{split} HFA_{imc} &= \alpha_1 I_c + \alpha_2 I_c \times 2ndChild_{imc} + \alpha_3 I_c \times 3rd + Child_{imc} + \beta_1 2ndChild_{imc} + \beta_2 3rd + \\ & Child_{imc} + \gamma X_{imc} + \epsilon_{imc} \end{split}$$

 I_c : indicator for Indian children

 α_1 : India gap for first-born children (omitted birth order category)

 α_2 and α_3 : how the gap differs for second-born children and third-and-higher birth order children

 X_{imc} : a vector of controls that always includes child age dummy variables (in months) to account for nonlinear patterns of z-scores and age.

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

			HFA z-score			Stunted	WFA z-score	Hb level	Deceased
•	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	-0.082 [0.011]	0.092 [0.018]							
India × 2nd child			0.161 [0.027]		ndian h birth o				•
$India \times 3rd + child$		-0.377 [0.024]	-0.227 [0.032]	India	and be				
2nd child		•	-0.011 [0.017]	[0.053]	ficant. [0.027]	[0.004]	[0.012]	[0.022]	[0.002]
3rd+ child			-0.118 [0.019]	-0.169 [0.074]		0.036 [0.005]	-0.063 [0.014]	-0.037 [0.025]	-0.011 [0.003]
Africa mean of outcome	-1.351	-1.351	-1.351	-1.351	-1.351	0.375	-0.877	10.150	0.071
Child's age dummies × India	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mother's literacy × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother's age at birth × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample	No	No	No	Yes	No	No	No	No	No
Observations		168,108		66,566	83,228	167,737	167,737	88,838	199,514

• Endogeneity Concerns

The ideal data for examining differences in the birth order gradient across India and Africa would use households that had completed fertility and would have height data for all children.

However, a large fraction of households in DHS sample have not completed childbearing. Hence, the regressions cannot control for total family size in general, raising an omitted variable bias concern.

* * *

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

			HFA z-score			Stunted	WFA z-score	Hb level	Deceased
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	-0.082 [0.011]	0.092 [0.018]							
India × 2nd child		-0.144 [0.025]	-0.161 [0.027]	-0.110 [0.063]		0.051 [0.007]	$-0.146 \\ [0.020]$		0.003 [0.004]
India × 3rd+child		-0.377 [0.024]	-0.227 [0.032]	-0.193 [0.092]	-0.436 [0.085]	0.064 [0.009]	$-0.198 \\ [0.024]$	-0.159 [0.036]	0.002 [0.004]
2nd child		0.023 [0.015]	-0.011 [0.017]	-0.097 [0.053]	-0.167 [0.027]	0.009 [0.004]	0.009 [0.012]	-0.011 [0.022]	-0.014 [0.002]
3rd+ child			-0.118 [0.019]		-0.334 [0.044]	0.036 [0.005]	-0.063 [0.014]		-0.011 [0.003]
Africa mean of outcome	-1.351	-1.351	-1.351	-1.351	-1.351	0.375	-0.877	10.150	0.071
Child's age dummies × India	Includ	a a sat	of cova	riotos t	S	Yes	Yes	Yes	Yes
Mother's literacy × Ind					b	Yes	Yes	Yes	Yes
Mother's age at birth × India	addres	ss endo	geneity		þ	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample					n urban			O	No
Observations	neight	orhoo	d. High	ly corre	elated to	fertility	outcom	es 338	199,514

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

			HFA z-score			Stunted	WFA z-score	Hb level	Deceased
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	-0.082 [0.011]	0.092 [0.018]		1					
$India \times 2nd child$		-0.144 [0.025]	-0.161 [0.027]		The addit				003 004]
$India \times 3rd + child$			-0.227 [0.032]		variables				002 004]
2nd child			-0.011 [0.017]		but not s 3rd+ Chile	J			014 002]
3rd+ child		-0.066 [0.013]	-0.118 [0.019]		not appre		·		011 003]
Africa mean of outcome	-1.351	-1.351	-1.351	-1.35	2nd Child	coeffici	ent.		071
Child's age dummies × India	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mother's literacy × India	No	No	Yes	Yes		Yes	Yes	Yes	Yes
Mother's age at birth \times India		No	Yes	Yes		Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes		Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample	No	No	No	Yes	No	No	No	No	No
Observations	168,108	168,108	167,737	66,56	66 83,228	167,737	167,737	88,838	199,514

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

			HFA z-score			Stunted	WFA z-score	Hb level	Deceased
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	-0.082 [0.011]	0.092							
Inc Results on the birth of	order gr	adient	-0.161 [0.027]		-0.243 [0.048]	0.051 [0.007]	-0.146 [0.020]	-0.094 [0.030]	0.003 [0.004]
In hold, although they a	are less		-0.227 [0.032]	-0.193 [0.092]		0.064 [0.009]	-0.198 [0.024]	-0.159 [0.036]	0.002 [0.004]
2n precisely estimated.		[0.015]	-0.011 [0.017]		•	0.009 [0.004]	0.009 [0.012]	-0.011 [0.022]	-0.014 [0.002]
3rd+ child		-0.066 [0.013]	-0.118 [0.019]	-0.169 [0.074]		0.036 [0.005]	-0.063 [0.014]	-0.037 [0.025]	-0.011 [0.003]
Africa mean of outcome			-1.351	-1.351			-0.877	10.150	0.071
Child's age dummies × India Mother's literacy × India	No No	No No	Yes Yes	Yes Yes	Yes No	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Mother's age at birth × India		No	Yes	Yes	No	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample	No	No	No	Yes	No	No	No	No	No
Observations	168,108	168,108	167,737	66,566	83,228	167,737	167,737	88,838	199,514

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

	(1)	(2)	HFA z-score (3)	(4)	(5)	Stunted (6)	WFA z-score (7)	Hb level (8)	Deceased (9)
India	-0.082 [0.011]	0.092			, i				
Include mother fixed effects,	fully co	ntrol fo	r family		-0.243 [0.048]	0.051 [0.007]	-0.146 [0.020]	-0.094 [0.030]	0.003 [0.004]
size differences by only using		•		092]	-0.436 [0.085]	The k	cey findi	ng is th	at the
comparisons for identification gradient remains statistically	097	-0.167 [0.027]		•	Ū	in child			
results are similar though sor				169 074]	-0.334 [0.044]	heigh	nt is twic	ce as la	rge in
magnitude to those in colum	ns 2 and	d 3.		351	-1.351	India	as in Af		
Ciniu s age duminies × muia	110	110	105	res	Yes	Yes	Yes	Yes	Yes
Mother's literacy × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother's age at birth × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
	-		tness chec with fam		des fixed 6	effects for	eventua	total fa	mily size,

Online Appendix Table 4: Birth order gradients compared to other regions

Comparison sample:		Countries 1	with similar	GDP to India	Europe,	Central & V	Vest Asia	Bangl	Bangladesh & Pakistan		
		HFA	HFA								
		z-score	z-score								
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
India		-0.034		0.221							
	Compare	India to	its two S		[0.020]						
India × 2nd child	hypothes	is is that	son pref		-0.111 [0.028]	-0.057 [0.030]	-0.182 [0.062]				
India × 3rd+ child	that the beginning that the beginning the beginning the beginning the beginning the beginning the beginning that the beginning t	sh and P	ı tılalı	-0.192 [0.028]	-0.059 [0.038]	-0.297 [0.114]					
2nd child	countries Hinduism		as less el	dest son pr	eference	e than		-0.011 [0.019]	-0.116 [0.021]	-0.229 [0.048]	
3rd+ child		-0.159 [0.013]	-0.155 [0.019]	-0.251 [0.044]	-0.147 [0.019]	-0.193 [0.026]	-0.306 [0.064]	-0.251 [0.019]	-0.287 [0.027]	-0.468 [0.088]	
Comparison group me	an of outcome	-1.303	-1.303	-1.303	-0.560	-0.560	-0.560	-1.610	-1.610	-1.610	
Age & other controls		No	Yes	No	No	Yes	No	No	Yes	No	
Mother FEs		No	No	Yes	No	No	Yes	No	No	Yes	
Observations		166,709	166,281	81,742	83,998	83,461	39,463	75,535	75,435	30,357	

II. Birth Order and Child Outcomes

B. Other Health Outcomes

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

			HFA z-score	Stunted	WFA z-score	Hb level	Deceased		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	0.002	0.092 [0.018]							
India \times 2nd child	_	0.144 [0.025]	-0.161 [0.027]	-0.110 [0.063]	-0.243 [0.048]	0.051 [0.007]	-0.146 [0.020]	-0.094 [0.030]	0.003 [0.004]
India × 3rd+child		0.377 [0.024]	-0.227 [0.032]	-0.193 [0.092]	-0.436 [0.085]	0.064 [0.009]	-0.198 $[0.024]$	-0.159 [0.036]	0.002 [0.004]
2nd child		0.023 [0.015]	-0.011 [0.017]	-0.097 [0.053]	-0.167 [0.027]	0.009 [0.004]	0.009 [0.012]	-0.011 [0.022]	-0.014 [0.002]
3rd+ child		0.066 [0.013]	-0.118 [0.019]	-0.169 [0.074]	-0.334 [0.044]	0.036 [0.005]	-0.063 [0.014]	-0.037 [0.025]	-0.011 [0.003]
Steep Indian birth order gradient to Africa, the disadvantage for In percentage points, and for third-(statistically significant at the 1% show a differentially steep birth age and hemoglobin in India.	s o o o	0.375 Yes Yes Yes Yes No No	-0.877 Yes Yes Yes Yes No No	10.150 Yes Yes Yes Yes No No	0.071 Yes Yes Yes Yes No No				

The Indian birth order gradient in child height is steeper than that in Africa and several alternative comparison groups including India's neighboring countries of Bangladesh and Pakistan. An important difference between India and comparator countries lies in the religious make-up of the population: roughly 4/5 of India's population is Hindu.

A. Within-India Evidence

➤ Begin by comparing matrilineal Indian states—Kerala and the eight

Northeastern states—with the rest of India. Matrilineality—which is

associated with kinship practices that favor boys less and do not prioritize

eldest sons—is more common in these states

TABLE 4—CULTURAL NORMS AND CHILD HEIGHT: WITHIN-INDIA EVIDENCE

Low son preference proxy	Kera	a and 1	North	east	Below-me	dian child	sex ratio		Muslims	
	HFA z-score (1)	WF z-sc (2	ore	HFA z-score (3)	HFA z-score (4)	WFA z-score (5)	HFA z-score (6)	HFA z-score (7)	WFA z-score (8)	HFA z-score (9)
Low son pref proxy × 2nd child	0.078 [0.039]	0.0 [0.0		1.040	0.078 order gradi	0.039	0.374 aight is s	-0.027	0.034	0.212 [0.360]
Low son pref proxy × 3rd+ child	0.108 [0.045]	0.([0.(ed in matri				· .	-0.279 [0.568]
2nd child	-0.185 [0.017]	-0. [0.	suk	sample	means pr	ovides s	uggestiv	e evidenc	e	-0.573 [0.123]
3rd+child	-0.422 [0.020]	−0.1 [0.			ences in th				Ī	-0.413 [0.193]
Low son pref group mean of outcome	-1.388	-1.1			t: average eds that in				'	-1.227
High son pref group mean of outcome Sample	-1.710 NFHS 1-3	-1.(NFHS		IHDS 1	NFHS 1-3			NFHS 1-3	NFHS 1-3	-1.575 3 IHDS 1
Age and other controls	Yes	Ye	S	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	95,125	95,1	25	3,615	95,125	95,125	3,615	82,084	82,084	3,405

TABLE 4—CULTURAL NORMS AND CHILD HEIGHT: WITHIN-INDIA EVIDENCE

Keral	a and North	neast	Below-me	edian child	sex ratio		Muslims			
HFA z-score (1)	WFA z-score (2)	HFA z-score (3)	HFA z-score (4)	WFA z-score (5)	HFA z-score (6)	HFA z-score (7)	WFA z-score (8)	HFA z-score (9)		
0.078 [0.039]	0.008 [0.029]	1.040 [0.515]	0.078 [0.030]	0.039 [0.023]	0.374 [0.236]			_		
0.108 [0.045]	0.069 [0.033]	1.793 [1.043]	0.081 [0.036]	0.044 [0.027]	1.065 [0.372]					
-0.185 [0.017]	-0.154 [0.013]	-0.578 [0.116]	-0.207 [0.020]	-0.173 [0.015]	-0.650 [0.140]					
-0.422 [0.020]	-0.350 [0.015]	-0.472 [0.183]	-0.437 [0.024]	-0.363 [0.019]	-0.738 [0.218]					
-1.388	-1.198	-1.407	-1.561	-1.491	-1.485		•			
-1.710	-1.648	-1.557	-1.721		-1.584	higher i	n low-se	•		
Yes	Yes	Yes	Yes	Yes	Yes	regions				
95,125	95,125	3,615	95,125	95,125	3,615	82,084	82,084	3,405		
	HFA z-score (1) 0.078 [0.039] 0.108 [0.045] -0.185 [0.017] -0.422 [0.020] -1.388 -1.710 NFHS 1-3 Yes	HFA z-score (1) (2) 0.078	z-score (1) z-score (2) z-score (3) 0.078 0.008 1.040 [0.039] [0.029] [0.515] 0.108 0.069 1.793 [0.045] [0.033] [1.043] -0.185 -0.154 -0.578 [0.017] [0.013] [0.116] -0.422 -0.350 -0.472 [0.020] [0.015] [0.183] -1.388 -1.198 -1.407 -1.710 -1.648 -1.557 NFHS 1-3 NFHS 1-3 IHDS 1 Yes Yes Yes	HFA z-score z-score z-score (1) (2) (3) (4) 0.078 0.008 1.040 0.078 [0.039] [0.029] [0.515] [0.030] 0.108 0.069 1.793 0.081 [0.045] [0.033] [1.043] [0.036] -0.185 -0.154 -0.578 -0.207 [0.017] [0.013] [0.116] [0.020] -0.422 -0.350 -0.472 [0.020] [0.015] [0.183] [0.024] -1.388 -1.198 -1.407 -1.561 -1.710 -1.648 -1.557 -1.721 NFHS 1-3 NFHS 1-3 IHDS 1 Yes Yes Yes Yes Yes Yes	HFA z-score (1) WFA z-score (2) HFA z-score (3) HFA z-score (4) WFA z-score (4) WFA z-score (4) WFA z-score (4) WFA z-score (4) Z-score (5) Z-score (4) Z-score (5) Z-score (4) Z-score (4) Z-score (5) Z-score (4) Z-score (2) Z-score (2)	HFA z-score z-score z-score (1) (2) (3) HFA z-score (2) (3) (4) (5) (6) (6) (7) (1) (2) (3) (4) (5) (6) (6) (6) (7) (1) (2) (3) (4) (5) (6) (6) (6) (6) (7) (1) (1) (2) (3) (4) (5) (6) (6) (6) (7) (6) (7) (6) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	HFA z-score z-score z-score (1) (2) (3) HFA z-score z-score z-score (2) (3) (4) (5) (6) (7) 0.078 0.008 1.040 0.078 0.039 0.374 [0.039] [0.029] [0.515] [0.030] [0.023] [0.236] LOW-sex a shallo gradien negative between constant of the properties	HFA		

TABLE 4—CULTURAL NORMS AND CHILD HEIGHT: WITHIN-INDIA EVIDENCE

Low son preference proxy	Keral	a and North	neast	Below-median child sex ratio Muslims	
	HFA z-score (1)	WFA z-score (2)	HF z-sc (3	ore z-score z-score z-score z-score z-s	HFA score (9)
Low son pref proxy × 2nd child Low son pref proxy	0.078 [0.039] 0.108	0.008 [0.029] 0.069	1. [0. 1.	Indians have a much more [0.047] [0.035] [0	0.212 0.360] 0.279
× 3rd+child 2nd child	[0.045] -0.185 [0.017]	[0.033] -0.154 [0.013]	[1. -0. [0.	for hirth order three and -0.159 -0.153 -0	0.568] 0.573 0.123]
3rd+child	-0.422 [0.020]	-0.350 [0.015]	-0. [0.	Hinduism, Islam places $\begin{bmatrix} -0.412 & -0.354 & -0.000 \\ [0.021] & [0.016] & [0.016] \end{bmatrix}$ less emphasis on needing	0.413 0.193]
Low son pref group mean of outcome High son pref group mean of outcome		-1.198 -1.648	-1.	ceremonies, and Islamic -1.691 -1.628 -1	1.227 1.575
Sample Age and other controls	NFHS 1-3 Yes	NFHS 1-3 Yes	IHI Y		IDS 1 Yes
Observations	95,125	95,125	3,6	preference, in turn, is weaker among Muslims 82,084 82,084 3,	3,405

- B. Favoritism toward Eldest Sons and Birth Order Gradients
- PREDICTION 1: Relative to African counterparts, both boys and girls in India will exhibit a steeper birth order gradient.
- Among boys: The eldest son, by definition, has the lowest birth order among sons in the family and will be favored over his siblings.
- Among girls: <1> A later-born girl is more likely to have an elder brother and be in competition with him for resources. <2> Consider a family with a desired fertility of two children and which wants at least one son. If the first-born is a daughter and their second child is also a girl...

B. Favoritism toward Eldest Sons and Birth Order Gradients

(2)
$$Y_{icm} = \alpha_1 I_c + \delta_1 I_c \times Girl + \delta_2 I_c \times Girl \times 2nd Child_{imc}$$

 $+ \delta_3 I_c \times Girl \times 3rd + Child_{imc} + \beta_1 2nd Child_{imc} + \beta_2 3rd + Child_{imc}$
 $+ \beta_3 Girl \times 2nd Child_{imc} + \beta_4 Girl \times 3rd + Child_{imc} + \beta_5 Girl_{imc}$
 $+ \alpha_2 I_c \times 2nd Child_{imc} + \alpha_3 I_c \times 3rd + Child_{imc} + \gamma X_{imc} + \epsilon_{imc}.$

- Expanded form of equation (1), where the key additional regressors are the triple interaction between India, birth order, and being a girl.
- Interested in $\delta 2$ and $\delta 3$, which test whether India's steep birth order gradient is stronger among girls or boys.

TABLE 5—CHILD GENDER AND THE BIRTH ORDER GRADIENT IN HEIGHT

	HFA z-score		WFA z-score	HFA z-score			WFA z-score	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
India	0.148 [0.026]				-0.011 [0.014]			
India × Girl	-0.111 [0.036]				-0.143 [0.020]	-0.147 [0.019]	-0.098 [0.032]	-0.116 [0.014]
India × 2nd child	-0.107 [0.036]	$-0.152 \\ [0.040]$	-0.228 [0.069]	-0.122 [0.030]				
India × 3rd+ child	-0.352 [0.033]	$-0.221 \\ [0.047]$	-0.414 [0.097]	-0.175 [0.035]				
$India \times 2nd \ child \times Girl$	-0.076 [0.053]	$-0.045 \\ [0.057]$	-0.024 [0.101]	-0.047 [0.043]				
$India \times 3rd + child \times Girl$	-0.051 [0.047]	-0.048 [0.067]	-0.030 [0.092]	-0.064 [0.049]				
Africa mean of outcome Age and other controls Mother fixed effects	-1.575 No No	-1.575 Yes No	-1.575 No Yes	-1.575 Yes No	-1.351 No No	-1.351 Yes No	-1.351 No Yes	-1.351 Yes No
Observations	168,108	165,596	83,228	165,596	168,108	167,737	83,228	167,737

- B. Favoritism toward Eldest Sons and Birth Order Gradients
- ➤ While the birth order gradient does not differ by gender, there are two reasons to expect a level difference by gender in India.
- 1. If eldest sons receive more resources than all other children, then sons on average will fare better than daughters.
- 2. The gender composition of children influences fertility behavior: in India, the birth of a girl in a family with only daughters increases mothers' desire for additional children. Thus, daughters in India are more likely to belong to larger than planned families that lack adequate resources for their children. These two effects, together, yield a second prediction.

B. Favoritism toward Eldest Sons and Birth Order Gradients

• PREDICTION 2: The India-Africa height gap will be more pronounced among girls.

TABLE 5—CHILD GENDER AND THE BIRTH ORDER GRADIENT IN HEIGHT

	HFA z-score	WFA z-score	<u>i</u>	WFA z-score		
	(1) (2) (3) (4)	(5)	(6)	(7)	(8)
India	Overall, only India	n girls	-0.011 [0.014]			
India × Girl	show a child heigh		-0.143 [0.020]	-0.147 [0.019]	-0.098 [0.032]	-0.116 [0.014]
India × 2nd child	disadvantage rela	tive to				
India × 3rd+ child	_ Africa and this ger					
India × 2nd child × Girl	remains significan include additional					
India \times 3rd+ child \times Girl	and also when we	estimate a				
Africa mean of outcome Age and other controls Mother fixed effects	regression with m	other fixed	–1.351 No No	-1.351 Yes No	-1.351 No Yes	-1.351 Yes No
Observations	168,108 165,596 83,2	228 165,596	168,108	167,737	83,228	167,737

• Eldest vs General Son Preference — Indian parents favor all sons over daughters and also favor the eldest son over other sons eldest son preference appears to be what causes the birth order gradient.

Both girls and noneldest sons fare much better in matrilineal states than the rest of India, while eldest sons enjoy a much smaller gain

FIGURE 3. HEIGHT OF INDIAN CHILDREN RELATIVE TO AFRICA

C. Alternative Explanations

➤ Maternal Health: Indian mothers are, on average, six centimeters shorter than African mothers. They examine whether maternal health endowment has differential effects on child height by birth order.

Online Appendix Table 10: Alternative explanations for the Indian birth order gradient

	HFA z-score	Dia	rrhea in last	HFA z-score	HFA z-score	HFA z-score	HFA z-score
	(1)		2 weeks (2)	(3)	(4)	(5)	(6)
India × 2nd child	-0.156 [0.031]		-0.001 [0.005]	-0.165 [0.028]	-0.142 [0.030]	-0.154 [0.029]	-0.153 [0.046]
India \times 3rd+ child	-0.185 [0.038]			st is wheth	36	-0.212 [0.035]	-0.211 [0.054]
2nd child	0.244 [0.357]			ing mother	ne)	-0.061 [0.027]	-0.003 [0.041]
3rd+ child	-0.404 [0.426]		_	knock out" onger birth	.5	-0.199 [0.033]	-0.100 [0.047]
2nd child \times Mother's height	-0.161 [0.226]			gradient in			
3rd+ child \times Mother's height	0.183 [0.269]		•	and it does			
2nd child \times Open defecation				efficients o			
3rd+ child × Open defecation				er'sHeight × Order dumm			
2nd child × Percent non-resident among children			are sm	all and	51 78]		
3rd+ child × Percent non-resident among children			_	ficant, and	the 76		
2nd child \times Nr. of a dult females in hh			•	Indian birth gradient		0.022 [0.012]	
3rd+ child \times Nr. of a dult females in hh			remair			0.044 [0.015]	
2nd child \times Land scarcity						[]	-0.003 [0.015]
3rd+ child \times Land scarcity							-0.007 [0.017]
Africa mean of outcome Age & other controls Observations	-1.351 Yes 166,292		0.156 Yes 167,737	-1.351 Yes 162,503	-1.351 Yes 167,737	-1.351 Yes 167,737	-1.351 Yes 167,737

C. Alternative Explanations

➤ **Disease Environment**: Even absent changes in a household's sanitation infrastructure, later-born children may have a worse disease environment because older siblings expose them to pathogens or because they receive lower-quality care.

Online Appendix Table 10: Alternative explanations for the Indian birth order gradient

	HFA z-score (1)	Diarrhea in last 2 weeks (2)	HFA z-score (3)	HFA z-score HFA z-score HFA z-score (4) (5) (6)
India \times 2nd child	-0.156 [0.031]	-0.001 [0.005]	-0.165 [0.028]	-0.142 -0.154 -0.153 [0.030] [0.029] [0.046]
India \times 3rd+ child	-0.185 [0.038]	0.012 [0.006]	-0.217 [0.035]	Column 2 shows that [1]
2nd child	0.244 [0.357]	-0.001 [0.003]	-0.024 [0.019]	there is no
3rd+ child	-0.404 [0.426]	0.001 [0.004]	-0.138 [0.023]	appreciable birth order gradient for
2nd child \times Mother's height	-0.161 [0.226]			diarrhea in India.
3rd+ child × Mother's height	0.183 [0.269]			Column 3 directly
2nd child \times Open defecation			0.035 [0.030]	shows that controlling for the
3rd+ child × Open defecation			0.055 [0.035]	rate of open
2nd child × Percent non-resident among children				defecation does
3rd+ child × Percent non-resident among children				not diminish the
2nd child \times Nr. of a dult females in hh				magnitude of the India-Africa birth
3rd+ child \times Nr. of a dult females in hh				order gradient in
2nd child × Land scarcity				child height.
3rd+ child \times Land scarcity				-0.007 [0.017]
Africa mean of outcome Age & other controls Observations	-1.351 Yes 166,292	0.156 Yes 167,737	-1.351 Yes 162,503	-1.351 -1.351 -1.351 Yes Yes Yes 167,737 167,737 167,737

C. Alternative Explanations

➤ Communal Child-Rearing: The presence of older siblings will typically reduce the time parents can devote to later-born infants. This constraint may be less strict in Africa, which has a strong norm of relatives and neighbors helping raise children (Goody 1982), allowing greater investments in later-born children.

	HFA z-score (1)	Diarrhea in last 2 weeks (2)	HFA z-score (3)	HFA z-score (4)	HFA z-score (5)	HFA z-score (6)
India \times 2nd child	-0.156 [0.031]	-0.001 [0.005]	-0.165 [0.028]	-0.142 [0.030]	-0.154 [0.029]	-0.153 [0.046]
India \times 3rd+ child	-0.185 [0.038]	0.012 [0.006]	-0.217 [0.035]	-0.215 [0.036]	-0.212 [0.035]	-0.211 [0.054]
2nd child	0.244 [0.357]	-0.001 [0.003]	-0.024 [0.019]	-0.036 [0.025]	-0.061 [0.027]	-0.003 [0.041]
3rd+ child	-0.404 [0.426]	0.001 [0.004]	-0.138 [0.023]	-0.133 [0.028]	-0.199 [0.033]	-0.100 [0.047]
2nd child × Mother's height	-0.161 [0.226]					
3rd+ child × Mother's height	0.183 [0.269]					
2nd child \times Open defecation			0.035			
3rd+ child \times Open defecation		le both prox				
2nd child \times Percent non-resident among children		nigher in Afr India-Africa		0.251 [0.178]		
$3\text{rd}+\text{child}\times\text{Percent non-resident among children}$		er gradient is		0.176 [0.204]		
2nd child \times Nr. of a dult females in hh		ıst to inclusi		[0.201]	0.022 [0.012]	
$3rd+$ child \times Nr. of adult females in hh	eith	er proxy			0.044 [0.015]	
2nd child \times Land scarcity					[2222]	-0.003 [0.015]
3rd+ child \times Land scarcity						-0.007 [0.017]
Africa mean of outcome Age & other controls Observations	-1.351 Yes 166,292	0.156 Yes 167,737	-1.351 Yes 162,503	-1.351 Yes 167,737	-1.351 Yes 167,737	-1.351 Yes 167,737

C. Alternative Explanations

Land Scarcity: In Africa, where land is more abundant, parents might value a larger number of children as farm help, and this could imply that early- and laterborn children are more equally valued. This, in turn, could have engendered an African norm of valuing higher birth order children more.

Online Appendix Table 10: Alternative explanations for the Indian birth order gradient

	HFA z-score (1)	Diarrhea in last 2 weeks (2)	HFA z-score (3)	HFA z-score (4)	HFA z-score (5)	HFA z-scor
India × 2nd child	-0.156 [0.031]	-0.001 [0.005]	-0.165 [0.028]	-0.142 [0.030]	-0.154 [0.029]	-0.153 [0.046]
India \times 3rd+ child	-0.185 [0.038]	0.012 [0.006]	-0.217 [0.035]	-0.215 [0.036]	-0.212 [0.035]	-0.211 [0.054]
2nd child	0.244 [0.357]	-0.001 [0.003]	-0.024 [0.019]	-0.036 [0.025]	-0.061 [0.027]	-0.003 [0.041]
3rd+ child	-0.404 [0.426]	0.001 [0.004]	-0.138 [q	-0.133	-0.199	-0.100 [0.047]
2nd child \times Mother's height	-0.161 [0.226]			de the 196 of populat		
$3rd+$ child \times Mother's height	0.183 [0.269]			area as a p		
2nd child × Open defectation			for h	istorical lar	nd	
$3rd+$ child \times Open defectation			ſď	ity. By this		
and child \times Percent non-resident among children				ic, while la		
$\operatorname{brd}+\operatorname{child}\times\operatorname{Percent}$ non-resident among children				dia than Af		
and child \times Nr. of adult females in hh				ot explain v		
$\operatorname{Brd}+\operatorname{child}\times\operatorname{Nr.}$ of adult females in hh				nt drops off		
2nd child \times Land scarcity			•	oly with bir	th	-0.003 [0.015]
$3rd+$ child \times Land scarcity			orde	r in India.		-0.007 [0.017]
15:	-1.351	0.156	-1.351	-1.351	-1.351	
Africa mean of outcome Age & other controls	-1.351 Yes	0.156 Yes	-1.351 Yes	-1.351 Yes	-1.351 Yes	-1.351 Yes
Observations	166,292	167,737	162,503	167,737	167,737	167,737

C. Alternative Explanations

- In sum, limited evidence support these alternative explanations that can cause a large differential birth order gradient in height in India compared to Africa
- In this sense, eldest son preference is likely unique in offering a parsimonious explanation for not just the birth order gradient but also a suite of other facts.

IV. Conclusion

This paper compares child height-for-age in India and Africa in order to shed light on India's puzzlingly high rate of stunting. Several facts point to intrafamily allocation decisions as a key factor. First, India's height disadvantage emerges with second-born children and increases with birth order. Second, investments in successive pregnancies and higher birth order children decline faster in India than Africa.

IV. Conclusion

They examine a specific mechanism that could drive India's steep birth order gradient in child height: eldest son preference. They compare subgroups within India and show that subgroups with lower son preference exhibit a shallower birth order gradient. Then they derive a set of predictions linking the extent of unequal resource allocation within a family to the gender composition of siblings and find that these predictions are supported in the data.

THANK YOU